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Abstract 

While fire is an important ecological process in the western United States, wildfire size and 
severity have increased over recent decades as a result of climate change, historical fire 
suppression, and lack of adequate fuels management. Due to the urgency to build ecosystem 
resilience and protect life and property, land managers implement fuel management programs. 
Technology used to quantify ladder fuels, which bridge the gap between the surface and canopy, 
and lead to more severe canopy fires, can inform management treatments to reduce future 
wildfire risk. In this study, we evaluated several remote sensing techniques and field 
measurements to quantify ladder fuels and related ladder fuel metrics to wildfire burn severity. 
Ladder fuel data at 1-m strata from 1-8 m were collected using a photo banner, a terrestrial laser 
scanner (TLS), a handheld-mobile laser scanner (HMLS), an unoccupied aerial system (UAS) 
with a multispectral camera and Structure from Motion (SfM) processing (UAS-SfM), and an 
airborne laser scanner (ALS) in 35 plots in oak woodlands in Sonoma County, California, USA 
prior to the occurrence of natural wildfires. Canopy base height (CBH) was estimated in the 
field, and post-wildfire burn severity was calculated using the Relativized delta Normalized Burn 
Ratio (RdNBR). The linear relationships between ladder fuel metrics at each stratum collected 
via different methods were compared using Pearson’s correlation (r) and RdNBR prediction via 
ladder fuel estimation was evaluated with a generalized linear model (GLM). All methods were 
not consistently related to each other, unless CBH class was included as a means of categorizing 
structural differences among plots. The UAS-SfM approach often could not produce 
measurements below 8 m due to lack of below-canopy detection, and, therefore, is highly limited 
for ladder fuels estimation in oak woodland and mixed conifer forests. The most common ladder 
fuels strata included in the burn severity model were 1-2 m and 3-4 m. The most predictive 
models included data from TLS and ALS with R2 of 0.67 and 0.66, respectively. By accounting 
for interactions between ladder fuels, CBH, and burn severity, diverse remote sensing 
approaches can be used to estimate and validate ladder fuels. 

Objectives 

Our original study objectives were to: 1) Determine if the calculated relative ladder fuel cover 
metric derived from airborne LiDAR is similar to measurements of ladder fuels calculating using 
the Kramer et al. (2016) photographic method and using a terrestrial laser scanner (Hillman et 
al.2019). 2) Derive the relative ladder fuel cover metric using 2 different types of terrestrial 
LiDAR acquisition systems (Riegl and Zeb). 3) Relate the relative ladder fuel cover metric 
(calculated via photos, ALS and TLS) to canopy base height (calculated via ground 
measurements, ALS and TLS). These objectives directly used science to inform resource 
management by providing a quantitative evaluation of methods currently being used to estimate 
canopy fire fuels. They also helped to provide a recommendation to land managers for future 
measurements to be taken, with respect to both metric and equipment to be used. 
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An additional remote sensing technique was included in this project due to its relevance - an 
unoccupied aerial system with Structure from Motion processing (UAS-SfM). While objectives 1 
and 2 were met, the direction of the question changed slightly. Objective 3 was partially met with 
the inclusion of CBH in our models, however it was not estimated via ALS or TLS due to 
complications related to their differences in resolution. A unique opportunity arose when two of 
our study sites were burned by a natural wildfire immediately after taking measurements at both 
which led our objectives to become: 1) What is the linear relationship between ladder fuel 
metrics estimated using TLS, HMLS (aka Zeb), UAS, ALS, and photo banner methods, and how 
do these relationships change within CBH categories?; 2) For each measurement method, can 
ladder fuels be used to predict wildfire burn severity (i.e., RdNBR) at a plot scale? If so, which 
ladder fuel strata from 1-8 m is the most important predictor variable?; and, 3) When predicting 
burn severity, do different methods of estimating ladder fuel variables lead to different predictive 
capabilities?  We hypothesized that ladder fuel metrics from different approaches would be 
correlated to each other if their measurement approach was similar (i.e., terrestrial or airborne 
perspectives, laser or image based). In addition, we hypothesized that TLS and HMLS data 
would most accurately predict burn severity (RdNBR) due to their high point density, closely 
followed by ALS. We predicted UAS-SfM and the photo banner would not be able to 
significantly predict burn severity (RdNBR) due to the lack of below canopy detection of UAS-
SfM and 4-m height limit of the banner. We hypothesized that the most important predictor 
ladder fuel strata would be 1-4 m, as was found by Green et al. (2020).  

Background 

While fire is an important ecological process in the western United States, wildfire size and 
severity has increased over recent decades as a result of climate change, historical fire 
suppression, and lack of adequate fuels management (Jolly et al. 2015, Jain et al. 2017; 
Abatzoglou et al., 2016; Dennison et al., 2014). Due to the urgency to build ecosystem resilience 
and reduce risk to life and property in light of future wildfire events, land managers are 
implementing fuel management programs (Duff et al., 2013, 2019; Stephens et al., 2012). Ladder 
fuels, which are live and dead vegetation that bridge the gap between the surface and the canopy, 
can potentially cause a low-severity surface fire to become a high-severity canopy fire (Ottmar et 
al. 2007; Menning and Stephens, 2007). Since fuels are challenging to measure in the field using 
traditional forestry methods, fuel structure is often estimated via remote sensing technology. 
Remote sensing allows for measurements across large and inaccessible areas at a potentially 
lower cost, depending on scale of measurements, relative to field-based techniques (Gale et al., 
2021).  
 
The use of airborne laser scanners (ALS), or LiDAR, has been used to estimate spatially explicit 
fuel parameters over landscape to regional scales (Jakubowksi et al., 2013; Andersen et al., 2005, 
Kelly and DiTommaso, 2015; González-Ferreiro et al., 2017), and can contribute to reliable and 
robust estimates of modeled forest fire behavior (Kelly et al., 2017).  At plot to stand scales (i.e., 
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1 to 50 ha), unoccupied aerial systems (UAS; Joyce et al., 2021) can acquire digital aerial images 
at a relatively low cost; useful for repeated forest monitoring (Campbell et al., 2020). When UAS 
are flown to capture sufficiently overlapping images (i.e., 75-85%), Structure from Motion (SfM) 
data processing can generate 3D point clouds of vegetation structure, which has the potential to 
quantify fuel loads (UAS-SfM). At plot scales, terrestrial laser scanning (TLS), a ground-based 
form of LiDAR mounted on a tripod, is successful in estimating variables related to the spread of 
canopy fires, subtle fire-induced change, and forest fuels structural metrics (Chen et al., 2016; 
García et al., 2011; Gupta et al., 2015; Hillman et al., 2021), with millimeter accuracy and 
precision (Disney, 2019).  Handheld-mobile laser scanners (HMLS), also used at plot scales, are 
a lightweight LiDAR option that are about 30% the cost of a TLS and have been found to 
accurately estimate tree heights under heights of 25 m (Hyyppä et al., 2020) and diameter at 
breast height (DBH) with less variation than field measurements (Chudá et al., 2020; Hyyppä et 
al., 2020). Currently, no studies have examined the use of HMLS to examine ladder fuels and 
few studies have used the technology to examine forest structure parameters (Donager et al., 
2021; Marselis et al., 2016). 
  
While there is a diversity of advanced techniques to measure forest structure, the scientific 
community lacks consensus on which remote sensing approach is best to estimate fuels due to 
the tradeoff in coverage, cost, accuracy, and efficiency between approaches. Furthermore, there 
is no standard for quantification of fuels across methods or comprehensive validation of fuels 
measured by remote sensing with on-the-ground data. As a result, fuels are often indirectly 
measured. For example, the upper limit of ladder fuels is defined as canopy base height (CBH), a 
metric that defines the distance between the bottom of the canopy and ground. Thus, CBH, a 
distance that influences vertical propagation of fire and is easily measured in the field or by 
remote sensing, is the variable most often used to model the transition of surface to crown fires, 
as opposed to ladder fuels (García et al., 2011). 
  
Recently, however, Kramer et al. (2016) presented a ground-based photographic technique 
(referred to hereafter as the photo banner) to directly measure ladder fuels, rather than using 
CBH to model the effects of ladder fuels. Importantly, this explicit measure of ladder fuels was 
found to correlate with a ladder fuel metric developed using airborne LiDAR data (Kramer et al. 
2016). Currently, land managers and conservation groups in Sonoma County, California use this 
ladder fuel metric via ALS measurements in machine learning models related to wildfire severity 
(Green et al., 2020). The higher the density of shrubs and forest ladder fuels, the higher the 
canopy damage was observed from wildfires (Green et al., 2020). 
  
Given the important predictive role of ladder fuels, as estimated by ALS data, in predicting 
canopy damage following wildfire in Sonoma County, the purpose of this study was to evaluate 
the use of a suite of remote sensing approaches (TLS, HMLS, UAS-SfM, and ALS) and field 
measurements (photo banner) to quantify plot-scale ladder fuels in oak woodlands and mixed 
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forests in the same region and relate measurements of ladder fuels to wildfire burn severity. We 
chose to define burn severity using the Relativized delta Normalized Burn Ratio (RdNBR) 
applied to pre- and post-fire Landsat multispectral satellite imagery (Miller and Thode, 2007). 
 

Materials and Methods 

Data collection and processing 

 

Figure 1: Map of our study locations (Pepperwood Preserve and Saddle Mountain Open Space Preserve) 
and plots (indicated by grey squares and circles) in Sonoma County, California. The perimeter of each 

wildfire that occurred during our research study is shown in red. 
 

Data were collected from two study sites, Pepperwood Preserve (3,200 acres; 38° 34' 57.5", -
122° 42' 37.3") and Saddle Mountain Open Space Preserve (960 acres; 38° 30' 3.3", -122° 37' 
44.6"), both in the Mayacamas Mountains in Sonoma County 10-20 km outside of Santa Rosa, 
California, USA (Figure 1). The most prominent community at both sites is oak woodlands and 
mixed conifer forests. Data were collected at both sites immediately before a natural wildfire at 
each. The Kincade Fire burned 14 of our 24 plots at Pepperwood in September 2020, and the 
Glass Fire burned all 11 of our plots at Saddle Mountain in September 2021.  

At each site, a variety of approaches were used to generate ladder fuel metrics at different height 
strata from 1-8 m, using the equation used by Kramer et al (2014). We adopted Kramer et al.’s 
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(2016) photographic approach (“photo banner”) to measure ladder fuels at a plot-level.  Ladder 
fuel banner photos were analyzed by finding the percent area of all parts of vegetation covering 
the photo banner via ImageJ (Kramer et al., 2016; National Institute of Health, Maryland, USA, 
version 1.52). Crown base height was measured for each tree >10 cm DBH in each plot. A tape 
measure or a laser hypsometer was used to measure from the lowest live crown to the ground 
when possible. To determine canopy base height (CBH), the crown base height for each tree 
within each plot was averaged. The CBH values were binned into four CBH categories based on 
the distribution of our data and were as follows: low (0 – 3m), medium (3.01 – 6m), high (6.01 – 
9m), and very high (>9m).  

Terrestrial laser scanner (TLS): A Riegl VZ-400i TLS (RIEGL Laser Measurement Systems 
GmbH) was used to scan each plot as recommended by Wilkes et al. (2017). Processing for TLS 
data occurred in RiSCAN PRO (Riegl Laser Measurement Systems GmbH, Horn, Austria, 
version 2.8.2). To align all scans within each plot to each other to create one plot-level scan, a 
course and fine registration. TLS plot-level data was aligned to ALS data in NAD83(2011) / 
UTM Zone 10N and geoid 12B for accurate georeferencing. Following registration and 
alignment, Lidar360 (GreenValley International, Berkeley, California, version 4.1) was used to 
create a DEM used to normalize each plot.   

Handheld-mobile laser scanner (HMLS): We walked a GeoSLAM ZEB-Revo for 5-10 minutes 
throughout each plot to collect data points. The path of the HMLS was based on Bauwens et al. ( 
2016). Using the GeoSLAM software (GeoSLAM, Nottingham, United Kingdom), HMLS data 
were automatically generated for each plot. The resulting point clouds were then aligned to  TLS 
data. Lidar360 was then used to height normalize HMLS data by DEM for each plot.  

Unoccupied aerial system (UAS): A SenseFly eBee X fixed-wing UAS and a DJI Matrice 200 
quadcopter UAS with a MicaSense RedEdge-MX sensor were flown during the same time period 
that TLS, HMLS, and photo banner data were collected. For more detailed information about 
UAS methods see Reilly et al. (2021). Due to the accuracy of the ALS DEM, it was used to 
height normalize UAS-SfM data using the R lidR and raster packages.  

Airborne laser scanner (ALS): ALS data were downloaded from existing data collected in 2013 
for Sonoma County (QL1/2013). Data can be found at  http://sonomavegmap.org/data-
downloads/. For more detailed information about ALS methods see Watershed Sciences (2016). 
ALS ground points were used to create a 1-m raster DEM using the R lidR and raster packages 
and TIN interpolation and then used to height normalize the ALS point clouds. 

Wildfire burn severity: Landsat 8 satellite images were used to calculate the Relativized delta 
Normalized Burn Ratio (RdNBR) from the Kincade and Glass fires, using formulas in Miller and 
Thode (2007). Plot RdNBR values were binned similarly to Miller and Thode (2007), but due to 
a small sample size for high severity plots (n=1), the high severity plot was grouped into a 
moderate and above group (316-1200).  
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Data Analyses  
Ladder fuels: Ladder fuels were then extracted at the plot level from TLS, HMLS, UAS-SfM, 
and ALS data using the lidR package in R. The mean CBH (5.0 m) plus one standard deviation 
(2.7 m) was used to determine the maximum height for ladder fuels (8.0 m). Using the equation 
from Kramer et al. (2014, Table 2A), the density of points within all 1-m ladder fuel strata up to 
8 m were calculated using only points above 0 m (filtering out negative points). 

Comparing ladder fuel metrics across methods: Pearson's product moment correlation (r) values 
were used to compare ladder fuel metrics derived from each method. To compare the metrics 
used by Kramer et al. (2016) and Green et al. (2020) to our data, ladder fuels from 1-4 m and 1-8 
m were also extracted and calculated from each dataset using Equation 4. Since the photo banner 
only goes up to 4 m, it was not included in any analyses above 4 m. Metrics were analyzed 
within CBH bins to determine if ladder fuels were related to average plot CBH (and thus, overall 
plot forest canopy structure). Note that for this study, CBH data were only measured in the field 
and not via remote sensing methods. 

Modeling the relationship between ladder fuels and burn severity: To determine the effect of 
ladder fuels metrics on RdNBR, and interactions with CBH, linear models were selected using 
proc GLMSELECT in SAS (SAS Institute Inc, Cary, North Carolina, version 9.4) using forward 
stepwise variable selection based on minimizing Schwarz's Bayesian Criteria (SBC). The global 
model contained each ladder fuel strata, CBH, and the interaction between CBH and each ladder 
fuel strata.  
 

Results and Discussion 

Data collected by TLS, HMLS, UAS-SfM, and ALS had average plot-level point densities of 
399,064 pts/m2, 16,378 pts/m2, 330 pts/m2, and 17 pts/m2, respectively. For each method, there 
was a high percentage of points between 0-1 m and a decrease in percentage of points between 1-
2 m (Table 2). While our ladder fuel strata were between 1-8 m, we also included the point 
density between 0-1 m in our discussion as this measurement was included in the calculation of 
each ladder fuel strata. The TLS and HMLS data gradually increased in point density with 
decreasing strata height, due to bottom-up scanning of the forest. Out of the 84% of TLS data 
collected below 8 m, approximately half was between 0-1 m (Table 1; Table 2). Out of the 
96.7% of HMLS data collected below 8 m, 32.5% was between 1-8 m. In contrast, point density 
in UAS-SfM and ALS data gradually decreased with decreasing strata height (not including 1-2 
m for UAS-SfM), due to the top-down views of those sensors. Data collected using UAS-SfM 
had the highest point density at the top of the canopy, but the technique did not capture as many 
understory or ground points as TLS or HMLS. Only 13.3% of UAS-SfM data were between 1-8 
m, while 28.2% were between 0-8 m. Data collected by ALS were comparatively sparse, but had 
better canopy penetration than UAS-SfM, with 35.9% of points between 0-8 m, 19.6% of points 
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between 1-8 m, and an average of 2.8% of points in each stratum between 1-8 m. These patterns 
in the distribution of point density by measurement approach remained consistent irrespective of 
plot CBH classification (Figure 2).  

 

Figure 2: Vertical profile of vegetation (VVP) generated by each remote sensing method, separated into 
bins based on CBH for a representative plot. The percentage of points at each height was found by 

dividing the number of points at each height by the total number of points (above 0.5m) for each method. 
VVP under 8m shows the same data as the whole VVP, but zoomed in. The grey dashed line shown in the 

VVP represents 8m, the maximum height we used for ladder fuels, the grey dashed lines shown in the 
VVP under 8m, are in 1m increments and represent our ladder fuel strata. 

 

 TLS HMLS UAS-SfM ALS 
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0-1m 173,788.3 10,201.52 31.74 3.20 

1-2m 57,311.12 2,884.81 10.55 1.70 

2-3m 61,264.81 2,088.40 10.40 1.97 

3-4m 47,787.23 1,364.58 11.89 2.10 

4-5m 36,910.99 899.64 11.33 2.18 

5-6m 31,782.90 672.06 15.25 2.32 

6-7m 27,585.26 514.63 21.13 2.31 

7-8m 22,966.50 380.56 24.78 2.50 

 
Table 1: Point density at each stratum, for each method. We included 0-1m because this data is included 
in the ladder fuel strata and clearly demonstrates the significant amount of data points for both the TLS 

and HMLS data. Point density was calculated by rasterizing the stratum. The percentage of points at each 
stratum was found by dividing the number of points at each stratum by the total number of points for each 

method. 
 

 TLS HMLS UAS-SfM ALS 

0-1m 43.5% 64.2% 14.9% 16.3% 

1-2m 10.4% 13.0% 2.4% 1.1% 

2-3m 7.7% 6.8% 1.2% 1.9% 

3-4m 5.9% 4.2% 1.1% 2.3% 

4-5m 4.8% 2.9% 1.2% 2.7% 

5-6m 4.4% 2.3% 1.7% 3.2% 

6-7m 4.0% 1.9% 2.5% 3.8% 

7-8m 3.5% 1.4% 3.2% 4.6% 

Total 
1-8m 

40.7% 32.5% 13.3% 19.6% 

Total 
0-8m 84.2% 96.7% 28.2% 35.9% 
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Table 2: Percentage of points at each stratum, for each method. We included 0-1m because this data is 
included in the ladder fuel strata and clearly demonstrates the significant amount of data points for both 
the TLS and HMLS data. The percentage of points at each stratum was found by dividing the number of 

points at each stratum by the total number of points for each method. 
 

Estimates of ladder fuel metrics were generated using TLS, HMLS, ALS, and photo banner 
methods, using sub-canopy height stratification techniques similar to other studies (Skowronski 
et al., 2007; Rowell et al., 2020; Kramer et al., 2016). While it was not possible to validate the 
ladder fuel density measured by each method in this study (i.e., through destructive sampling), 
our results imply that each method can be used on their own to examine a relative change in 
ladder fuel density over time. When comparing estimates of ladder fuels metrics across all 
methods, without accounting for forest canopy structure as defined by CBH, estimates from 
different approaches were not consistently correlated to one another (Figure 3). This finding 
suggests that estimating ladder fuels using point density is highly variable across methods.  
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Figure 3: Heatmap of Pearson correlation coefficients to compare ladder fuel metrics at multiple strata 
across methods. Significance is as follows: *** p-value ≤ 0.001, ** 0.001 > p-value ≤ 0.01, * 0.01 > p-

value ≤ 0.05. Note the removal of the banner from strata above 4 m. 

 

While we found various strong relationships between methods in ladder fuel densities, the 
magnitude of each measurement across techniques was not the same, primarily due to differences 
from the top-down (ALS, UAS-SfM) or bottom-up (TLS, HMLS) view of the canopy. TLS and 
HMLS had relatively low penetration into the upper-canopy, with 84% and 97% of points below 
8 m, respectively (Table 1; Table 2; Fig. 3), and consequently, since most of their points were 
sub-canopy, HMLS and TLS ladder fuels were significantly correlated across strata (+0.63 to 
+0.81) with percent differences from 3 to 5%. In contrast, only about a third of UAS and ALS 
points were below 8 m (28% and 36%, respectively), with UAS points heavily concentrated in 
the upper canopy or in canopy gaps (Fig. 3); and subsequently, ladder fuel correlations between 
UAS and ALS were generally weaker than TLS and HMLS, ranging from +0.25 to +0.64. Due to 
this differential detection of forest structure when sensing downward or upward, differences in 
the magnitude of metrics were especially pronounced for measurements of ladder fuels in the 
lower (1-2 m) and upper (7-8 m) strata. For example, across all plots, TLS had average estimates 
of ladder fuels that were 10% higher than ALS in the 1-2 m strata, whereas ALS had on average 
8% more ladder fuels estimated in the 7-8 m strata. These findings corroborate other studies 
which have found that TLS are more sensitive to 3D structure in the lower canopy than ALS and 
UAS LiDAR (Brede et al., 2019; García et al., 2011; Hillman et al. 2021a; Hillman et al., 2021b; 
Levick et al., 2021). Thus, while patterns in metrics were correlated between sensors, variation in 
the ladder fuel percentage values due to top-down vs bottom-up measurement approaches, in 
addition to factors such as laser scan overlap, scan angles, wavelength, and power, could explain 
differential significance of correlations among ladder fuels in our results, and ultimately their 
utility in subsequent fire behavior or burn severity modeling.  
  
Comparing ladder fuel metrics across methods within CBH categories 
When methods to estimate ladder fuels metrics were compared while taking overall forest 
canopy structure into account, particularly the distance from the ground to the main live canopy 
measured by field-based CBH, clearer patterns emerged in correlations in ladder fuel metrics 
among methods (Figure 4). These results stress the importance of forest canopy structure to 
determine ladder fuels and suggest that methods for ladder fuel estimation should include canopy 
structure to account for differences in measurement techniques. However, by separating our 
analyses by CBH, we partitioned the variance among measurement methods in a way that 
strengthened correlations. We chose CBH as a grouping variable because of its physically 
meaningful relationship to ladder fuels; it defines the lower height in the forest at which a 
wildfire can spread into the canopy. Other studies estimating ladder fuels using multiple 
approaches did not consider canopy structure (e.g. George and Alonso, 2008). Perhaps, the 



  12 

forests in which these measurements were taken were less complex than oak woodlands and 
mixed-conifer forests, with a wide range of forest structure (George and Alonso, 2008). In 
particular, oak woodlands have a dense understory of annual or perennial shrubs and resprouts, 
causing their community structure to be much more complex than other ecosystem types (George 
and Alonso, 2008; Jimerson and Carothers, 2002). As such, we recommend that future research 
explore the complex interactions between forest structure (e.g., CBH, stem density, canopy 
cover, etc.) and other site-level variables (e.g., frequency and severity of past disturbance, solar 
radiation) in these heterogeneous ecosystems, as their interactions are necessary to predict ladder 
fuels, yet the specific ecological mechanisms are still unknown. 

 
Figure 4: Heatmap of Pearson correlation coefficients to compare only the ladder fuel metric at 1-2 m by 
CBH category across all methods. Significance is as follows: *** p-value ≤ 0.001, ** 0.001 > p-value ≤ 

0.01, * 0.01 > p-value ≤ 0.05. Note the removal of UAS-SfM from the very high CBH due to low sample 
size (n=2). 

 
 
Comparing common ladder fuel metrics across methods 
While we defined ladder fuel strata in 1-m increments, we were also interested in comparing a 
ladder fuel metric from 1-4 m (Green et al. 2020) across methods and the ability of the ground-
based method (photo banner) to validate the 1-4 m ladder fuel metric (Figure 5). This metric was 
found to be an important predictor of canopy damage at the regional scale (Green et al. 2020), 
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and is produced at the state scale for fuels management and fire behavior modeling (California 
Forest Observatory; 2020) 

 
Figure 5: Heatmap of Pearson correlation coefficients to compare ladder fuel metrics 1-4 m and 1-8 m 
across methods. Significance is as follows: *** p-value ≤ 0.001, ** 0.001 > p-value ≤ 0.01, * 0.01 > p-

value ≤ 0.05 
 
When forest canopy structure (via CBH) was taken into consideration, the photo banner was 
significantly similar to the 1-4 m ladder fuel metric from TLS and ALS in high and very high 
CBH plots, and significantly similar to TLS, ALS, and HMLS in medium CBH plots (Figure 6). 
While no other studies to date have compared the photo banner to TLS or HMLS data, Kramer et 
al. (2016) found that the photo banner could be used to validate ALS measurements of ladder 
fuels. Our results indicate that remote sensing measurements of this metric can be measured 
using different approaches (i.e., TLS, HMLS) and then assist in the calibration and validation of 
spaceborne optical, LiDAR and SAR missions (e.g., GEDI, ICESAT-2, NISAR, BIOMASS) to 
help inform predictive models of canopy damage at varying spatial scales (Levick et al., 2021).  
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Figure 6: Heatmap of Pearson correlation coefficients for ladder fuel metric 1-4 m by CBH category 

across all methods. Significance is as follows: *** p-value ≤ 0.001, ** 0.001 > p-value ≤ 0.01, * 0.01 > p-
value ≤ 0.05. 

 
Similar to Hillman and colleagues (2021b), UAS-SfM methods were unable to consistently 
detect sub-canopy structure when compared to TLS, particularly in forests with closed canopies. 
We explored this technology due to its relatively low cost compared to airborne small-footprint 
lidar, mounted either on a plane or UAS. Despite its limitations, we found that UAS-SfM was 
significantly correlated with ALS across a range of strata, and correlations strengthened 
considerably with ALS and TLS when considering CBH classes. Interestingly, across plots 
differences between TLS and UAS ladder fuels were more pronounced at the upper strata 
(average UAS had 18% more than TLS in the 7-8 m stratum vs. only 1% higher in the 1-2 m 
stratum), whereas differences between UAS and ALS in these strata were more balanced (on 
average, about 10% more in UAS). Although the RdNBR UAS-SfM model did not perform as 
well as TLS or ALS, it had an R2 from 0.50 to 0.53, slightly better than HMLS (although the 
UAS-SfM model had fewer total plots, as previously mentioned). We thus find that there is some 
value in UAS-SfM, particularly in forests with gaps in the canopy, such as oak woodlands or 
managed stands, where some lower-canopy and ground points are detected in the SfM process. 
In addition, our previous research found multispectral UAS-SfM to be useful for monitoring 
changes in upper-canopy structure and greenness after wildfires (Reilly et al., 2021). We also 
note that multi-angle views can improve detection of sub-canopy structure with UAS-SfM 
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(Lamping et al., 2021), a factor that we could not explore as we were constrained to a nadir view 
by our UAS and sensor equipment. 
  
Modeling the relationship between ladder fuels and burn severity 
When the utility of ladder fuel density metrics to predict wildfire burn severity (as predicted by 
RdNBR) were examined, the most common ladder fuels strata included were 1-2 m and 3-4 m. 
While 7-8 m was also included in the model with HMLS data, there was a low density of points 
in this dataset (Table 1; Table 2). When comparing methods to collect ladder fuel data and 
predict RdNBR, the TLS model had the highest predictive power (R2 = 0.67). TLS provides very 
detailed data of forest structure (Disney, 2019) and thus was expected to be a useful approach for 
collecting data to predict RdNBR. In addition, the model using ALS data also had high 
predictive capability (R2 = 0.66), similar to TLS but using different metrics. Green et al. (2020) 
also showed that ladder fuels from 1-4 m measured by ALS were a significant predictor of 
canopy damage, with additional topographic variables (R2 = 0.63 for non-wind driven fires; R2 = 
0.56 for wind-driven fires).  
 
Models using ladder fuel metrics collected from HMLS and UAS-SfM approaches were not as 
useful to predict RdNBR (Table 3). While Bauwens et al. (2016) found HMLS outperformed 
TLS when estimating forest inventory metrics, HMLS is less reliable for density metrics, as point 
density varies based on length of scan and the walking path taken by the user. There was a very 
low correlation between the two methods at high CBH for 1-2 m (r = +0.26) for the present 
study, highlighting the effects of differences in data acquisition and point distribution between 
the two methods. While data collected from UAS-SfM produced models with moderate 
predictive capability, this method is only useful and reliable under certain forest conditions, such 
as an open-canopy forest. Importantly, the strength of ladder fuel variables to predict RdNBR 
were stronger in all analyses when CBH was included. This finding agrees with those of 
Fernández-Guisuraga et al. (2021) who found that severe ecosystem damage was mainly driven 
by vegetation structure rather than topography or patch size, with different roles of pre-fire fuel 
structure parameters. 
 

 
Model R2 SBC 

Sample Size 

 Total NC  Low   Moderate+ 

TLS Int, 1-2m*CBH, CBH 0.67 255.4 25 3 13 9 

HMLS Int, 7-8*CBH 0.44 259.0 25 3 13 9 

UAS-SfM Int, 7-8, 3-4*CBH 0.53 174.0 17 3 9 5 

ALS  Int, 1-2m*CBH, 3-4, 5-6*CBH 0.66 252.7 25 3 13 9 

Banner Int 0.00 251.2 24 3 12 9 
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Table 3: GLM model results using RdNBR. The overall sample size for each method and the sample size 
broken down into burn severity categories (no change, low, moderate and above) are also shown. 

 

Science delivery  

The results of this study have been presented to 30+ scientists and land managers in the 
Terrestrial Biodiversity and Climate Change Collaborative through a workshop presentation and 
discussion in June 2021. A summary of the preliminary findings was presented at Sonoma State 
University’s inaugural 3 Minute Thesis Competition in January 2021. A video on Lisa Bentley’s 
website also includes results of this study. Additionally, results have been presented to the 
public, international scientists, and fellow SSU students and faculty during the oral presentation 
associated with Brieanne Forbes’ M.S. thesis defense. The project findings have been presented 
as a poster at the American Geophysical Union (AGU) Annual Meeting in December 2021 and 
Sonoma State University at their Annual Research Symposium (April 2020). A management-
oriented summary guide has been created to be distributed throughout the Fire Science Network 
and to land managers. Lastly, a manuscript of this study has been submitted to a special edition 
of the journal Frontiers in Forests and Global Change called “Recent Advances in Remote 
Sensing of Forest Fires” and is currently in peer review. Additional outreach is planned in the 
near future.  

 

Conclusions and Implications for Management/Policy and Future Research 

Our study showed that measurements of ladder fuels using various remote sensing approaches 
are able to moderately estimate wildfire burn severity. In the future, additional forest structure 
variables, such as canopy height, spatial context of surrounding vegetation types, and 
topography, which have been shown to be important in predicting burn severity in our ecosystem 
(Green et al. 2020) and climate variables, especially annual mean vapor-pressure deficit, wind 
speed, and burning index (Chen et al., 2021), as well as those related to weather and fire 
propagation could also help inform future models as they may exert dominant control over burn 
severity in relation to topography (Viedma et al., 2015; García-Llamas et al., 2020), particularly 
under extreme climatic conditions (Turner and Romme, 1994). With a more robust model that 
includes additional forest structure, topographic and climate variables collected over more plots, 
the role of ladder fuels can be further assessed and extrapolated to broader spatial scales which 
has significant applications to scaling fire risk, perhaps using space-based LiDAR (i.e., NASA’s 
GEDI; Leite et al., 2022) or a state-wide forest monitoring system such as the California Forest 
Observatory, which estimates ladder fuels and CBH from multispectral satellite imagery 
calibrated with ALS.  
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In addition, the inclusion of a single broad forest structure metric (CBH) had a significant impact 
on model significance. Therefore, future studies should explore which specific aspect of forest 
structure (i.e., stand density, canopy cover, canopy height, and live crown ratio) would be the 
fundamental determinant of ladder fuel density and what other forest attributes can enhance 
model outcomes. Many studies have accurately estimated CBH from ALS data (Andersen et al., 
2005; Chamberlain et al., 2021; Kelly et al., 2017; Luo et al., 2018; Moran et al., 2020; 
Stefanidou et al., 2020), and a few studies have estimated CBH with TLS data (García et al., 
2011, Novotny et al., 2021), so ideally these forest structure variables could be estimated via 
remote sensing, to maintain a continuity in data collection. 

Lastly, while we used a density-based approach to estimate ladder fuels using remote sensing 
data, future studies should explore the use of voxel-based metrics or standardization of density 
metrics using voxels (Hillman et al. 2021). While Atchley et al. (2021) and Green et al. (2020) 
found significant results using density methods, voxels, a unit which defines 3D space, could be 
an alternative way of calculating ladder fuels. Wilson et al. (2021) found voxels to effectively 
explain the effects of logging and wildfire on vertical fuel continuity by using these methods to 
explain forest structure. Remote sensing methods, which are generally advancing more rapidly 
than those of fire behavior modelling, present an opportunity to forge new pathways in forest 
fuel estimation (Gale et al., 2021). 
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Lisa Patrick Bentley  
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Brieanne Forbes  

brieanne.k.forbes@gmail.com 
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Appendix B: List of Completed/Planned Scientific/Technical 
Publications/Science Delivery Products  

• Terrestrial Biodiversity and Climate Change Collaborative presentation.  
• Sonoma State 3 Minute Thesis Competition presentation.  
• The 3D Forests Project video on Lisa Bentley’s website:  

https://lisapatrickbentley.org/?page_id=126 
• M.S. thesis defense presentation 
• M.S. thesis 
• American Geophysical Union (AGU) poster 
• Sonoma State University Annual Research Symposium poster. 
• Management-oriented summary guide  
• Manuscript  
• Additional outreach is planned in the near future.  
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Appendix C: Metadata  

As required by the JFSP policy, a copy of our metadata document(s) will be uploaded to the JFSP online 
database as part of the final report submission. The following is a citation of the data in the FS Research 
Data Archive: 
 
Forbes, Brieanne K.; Reilly, Sean P.; Clark, Matthew L.; Ferrell, Ryan M.; Kelly, Allison C.; Krause, 
Paris D.; Matley, Corbin D.; O'Neil, Michael W.; Villasenor, Michelle T.; Disney, Mathias I.; Wilkes, 
Phil; Bentley, Lisa P. 2021. Plot-level ladder fuel estimation from a suite of remote sensing and field 
methods. Fort Collins, CO: Forest Service Research Data Archive. https://doi.org/10.2737/RDS-2021-
0101 
 
Here you can find a Comma-separated values (CSV) file containing ladder fuel estimation data, canopy 
base height, and Relativized delta Normalized Burn Ratio. Additionally, it includes a CSV file containing 
easting and northing coordinates of measurement plot centers, and a Joint Photographic Experts Group  


